Towards a fragility assessment of a concrete column exposed to a real fire –
نویسندگان
چکیده
Fires can cause substantial damage to structures, both non-structural and structural, with economic losses of almost 1% GDP in developed countries. Whilst design codes allow engineers to design for the primary design driver, property protection is rarely, if ever, designed for. Quantification and design around property protection has been used for some time in the seismic community, particularly the PEER framework and fragility analyses. Fragility concepts have now started to be researched predominantly for steel-composite structures, however, there has been little to no research into the quantification of property protection for concrete structures, whether in design or in post-fire assessments of fire damaged structures. This paper presents selected results from the thermal environment around, and the thermal response of, a concrete column from a large scale structural fire test conducted in Tisova, Czech Republic, inside a four-storey concrete frame building, with concrete and composite deck floors. From the results of the fire test, assessments of the fire intensity are made and used to model the potential thermal profiles within the concrete column and the implications that high temperature might have on the post-fire response of the concrete column. These thermal profiles are then used to assess the reduction of the columns crosssectional area and are compared to a quantified damage scale for concrete columns exposed to fire. This analyses presented herein will also show that common methods of defining fire intensity through equivalent fire durations do not appropriately account for the complexities of the thermal and structural response of concrete columns exposed to a travelling fire.
منابع مشابه
Towards Fragility Analysis for Concrete Buildings in Fire: Residual Capacity of Concrete Columns
Fire engineering a building, in general, has one central performance objective – life safety – and property protection is rarely explicitly considered. The engineering is typically based on only one possible fire, which may not represent the most onerous scenario (or may be much too onerous to be considered realistic). Taking inspiration from fragility analyses used in seismic engineering, this...
متن کاملThe Effect of Compressive Strength Reduction of Column Section Expose due to Freezing-Thawing Cycles on the Seismic Performance of Bridges
One of the serious damages of tremendous earthquakes is the damage to bridges as the major components in an arterial road network, as relief operation is interrupted following cutting roads. Regardless of the magnitude and severity of an earthquake, other factors are also important in the strength and seismic performance of concrete bridges. Freezing-thawing cycles are among the factors, whi...
متن کاملFragility Curves for Reinforced Concrete Frames with Lap-Spliced Columns
Placing column lap-splice in the locations of possible nonlinear deformation may adversely affect the structures response to strong ground motions. Localization of damage in splice zone may change the structural response and prevent the load redistribution and development of a uniform pattern of nonlinear excursions among the various members. Validated by existing laboratory experiments, this s...
متن کاملExtracting Concrete Thermal Characteristics from Temperature Time History of RC Column Exposed to Standard Fire
A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC) columns was conducted using a standard fire to obtain time history of temperature variations in...
متن کاملInfluence of Real Ground Motion Records in Performance Assessment of RC Buildings
Reinforced concrete frame buildings with Open Ground Story (OGS) are one of the most common building configurations in urban habitat. These configurations are known to be vulnerable to seismic excitations, primarily due to the sudden loss in strength in the ground story and differential stiffness distribution throughout the structure. The differential stiffness distribution is attributed primar...
متن کامل